(Enraf-Nonius, 1985b). Program(s) used to solve structure: MULTAN11/82 (Main et al., 1982). Program(s) used to refine structure: SDP. Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: SDP OMEGA.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: FGl063). Copies may be obtained through The Managing Editor. International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Bradford, A. M., Bradley, D. C., Hursthouse, M. B. \& Motevalli, M. (1992). Organometallics, 11, 111-115.

Bradley, D. C., Dawes, H. M., Hursthouse, M. B.. Smith L. M. \& Thornton-Pett, M. (1990). Polyhedron, 9, 343-351.
Bradley, D. C., Frigo, D. M., Harding, I. S., Hursthouse, M. B. \& Motevalli, M. (1992). J. Chem. Soc. Chem. Commun. pp. 577-578.
Enraf-Nonius (1985a). CAD-4 Software. Fortran Version 4.0. EnrafNonius, Delft, The Netherlands.
Enraf-Nonius (1985b). Structure Determination Package. SDP/VAX User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTANII/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1996). C52, 1186-1188

Diammine(dimethylmalonato)platinum(II) Monohydrate

Pascale Bréhin, " Jean Claude Chottard, " Jirí Kozelka ${ }^{a *}$ and Claudette Bois ${ }^{b}$
${ }^{a}$ Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Unité de Recherche Associèe au Centre National de la Recherche Scientifique, No. 400, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris 06, France, and ${ }^{b}$ Laboratoire des Métaux de Transition, Unité de Recherche Associée au Centre National de la Recherche Scientifique, No. 419, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris 05, France
(Received 22 June 1994: accepted 27 Oclober 1995)

Abstract

The complex molecule of the title compound, $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{6}-\right.\right.$ $\left.\left.\mathrm{O}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, assumes a boat conformation that is more planar than expected from an optimization of bond

lengths and angles. Likely origins of this extra flattening are the repulsion between the Pt centre and the methyl group in the axial position, and hydrogen bonding with the water of crystallization.

Comment

Fig. 1 shows an ORTEPII (Johnson, 1976) drawing of the complex molecule, and Fig. 2 shows the crystal packing. The complex of the title compound, (I), possesses a mirror plane which contains the $\mathrm{Pt}, \mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(4)$ atoms, and is perpendicular to the Pt coordination plane. The Pt atom exhibits usual square-planar coordination. The $\mathrm{Pt}-\mathrm{N}$ and $\mathrm{Pt}-\mathrm{O}$ bond distances are as expected for the cis- $\mathrm{PtN}_{2} \mathrm{O}_{2}$ chromophore (Rochon, Melanson, Macquet, Bellanger-Gariepy \& Beauchamp, 1985, and references therein). There is one water molecule present in the lattice (Fig. 2), which is connected by hydrogen bonding to both ammine ligands of one molecule and to one carbonyl O atom $[\mathrm{O}(2)]$ of each of two other molecules. The compound is isostructural with the recently determined cyclopropylmalonato derivative (Dong et al., 1990).

(I)

The molecule adopts a boat conformation, with the Pt and $\mathrm{C}(2)$ atoms at the bow and the stern, respectively, similar to that found in other malonato complexes of platinum(II) (Rochon, Melanson, Macquet, BellangerGariepy \& Beauchamp, 1985; Dong et al., 1990). As in these complexes, the boat is flattened at the Pt end, with $\mathrm{O}-\mathrm{Pt}-\mathrm{O}-\mathrm{C}$ torsion angles of $\pm 41^{\circ}$ (instead of $\pm 60^{\circ}$ if all the bond angles were tetrahedral) (Table 4). The C 2 end of the boat is flattened as well, with $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angles of $\pm 44^{\circ}$ (Table 4). In order to find out whether this flattening is simply due to the strain introduced to the six-membered ring by the two perpendicular $\mathrm{Pt}-\mathrm{O}$ bonds of $2.00(6) \AA$, we have constructed energy-minimized models using the program $A M B E R$ (Weiner \& Kollman, 1981). The energy function contained only bond and bond angle terms. The energy minimization resulted in a completely relaxed boat structure, with the bond lengths and bond angles having exactly the required values. The torsion angles of the relaxed model are given in Table 4. Their comparison with the experimental values shows that the boat is flattened at both ends more than expected for
a strain-minimized structure. The extra flattening could result from the hydrogen-bonding network connecting the complex molecule with the water of crystallization. Specifically, the two hydrogen bonds connecting both NH_{3} ligands of one Pt atom and a water molecule (Fig. 2) are likely to cause a flattening of the boat at the Pt end. In addition, the repulsion between the methyl H atom lying in the mirror plane and the Pt atom $[\mathrm{H}(4 b) \cdots \mathrm{Pt} 2.51(15) \AA$ A could cause a flattening on the carboxylate side.

The $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(1^{1}\right)$ angle of $114.5(6)^{\circ}$ corresponds to a mean value found in platinum malonate complexes (Rochon, Melanson, Macquet, BellangerGariepy \& Beauchamp, 1985) and probably represents the best compromise between the $s p^{3}$ hybridization at $\mathrm{C}(2)$ and the mutual repulsion of the carboxylate groups.

Fig. 1. ORTEPII (Johnson, 1976) drawing (30% probability ellipsoids) of the complex molecule of the title compound with the atom numbering.

Fig. 2. Stereoview of the crystal packing.

Experimental

The title compound was prepared following the procedure outlined by Harrison \& McAuliffe (1980) from equimolar amounts of cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and sodium dimethylmalonate, with a yield of 60%. Monocrystals were grown from an aqueous ethanol solution kept in a closed round-bottomed flask.

Crystal data

$\left.\left[\mathrm{Pt}_{(\mathrm{C}}^{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=377.27$
Orthorhombic
Pnma
$a=6.5901(8) \AA$
$b=9.4434(9) \AA$
$c=14.983(2) \AA$
$V=992.4(3) \AA^{3}$
$Z=4$
$D_{x}=2.69 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\text {min }}=0.07, T_{\text {max }}=0.25$
994 measured reflections
872 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=18-22^{\circ}$
$\mu=15.84 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Prism
$0.35 \times 0.35 \times 0.20 \mathrm{~mm}$ Colorless

772 observed reflections

$$
[I>3 \sigma(I)]
$$

$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 11$
$l=0 \rightarrow 17$
2 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F
$R=0.029$
$w R=0.037$
$S=1.05$
772 reflections
91 parameters
H atoms refined isotropically with an overall U
$w=\left[\sum_{r=1,3} A_{r} T_{r}(X)\right]^{-1}$ $\times\left[1-\left\{\left(F_{b}-F_{c}\right) / 6 \sigma\left(F_{o}\right)\right\}^{2}\right]^{2}$ with three coefficients for the Chebyshev polynomial $T_{r}(X) ; X=F_{o} / F_{r}(\max)$
$(\Delta / \sigma)_{\text {max }}=0.47$
$\Delta \rho_{\text {max }}=1.2 \mathrm{e} \AA^{-3}$
(in proximity of Pt)
$\Delta \rho_{\text {min }}=-1.3 \mathrm{e}^{-3}$
(in proximity of Pt)
Extinction correction: Larson (1970)
Extinction coefficient: 7.34×10^{-8}
Atomic scattering factors from CRYSTALS (Watkin, Carruthers \& Betteridge, 1985)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.			
x	\cdots	z	$U_{\text {cq }}$
0.16835 (4)	1/4	0.03218 (2)	0.020 (2)
0.1016 (9)	0.4() 24 (6)	().1229 (3)	0.030 (2)
0.2338 (6)	0.3997 (4)	-0.0583 (3)	0.027 (2)
0.4412 (6)	0.4871 (4)	-0.1588 (3)	0.036 (2)
0.3878 (8)	0.3874 (5)	-0.1116 (3)	0.022 (2)
0.514 (1)	1/4	-0.1130 (5)	0.020 (2)
0.652 (1)	1/4	-0.1932 (7)	0.031 (2)
0.645 (2)	1/4	-0.0286 (6)	0.034 (2)
0.221 (1)	1/4	(0.2967 (4)	0.037 (2)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{P}(1)-\mathrm{N}(1)$	$2.027(5)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.543(6)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$2.006(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.51(1)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.296(7)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$1.53(1)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.229(6)$		
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}\left(1^{\prime}\right)$	$90.4(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(2)$	$118.8(5)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$90.0(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$120.5(4)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{N}\left(1^{1}\right)$	$179.5(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(1^{1}\right)$	$114.5(6)$

$\mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{O}\left(\mathrm{I}^{\mathrm{i}}\right)$	$89.6(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$109.7(t$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Pt}(1)$	$121.4(3)$	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	$108.6(7$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$120.7(5)$	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$107.0(4$

Symmetry code: (i) $x, \frac{1}{2}-y, z$.
Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{1}$	$2.0(1)$	$2.784(7)$	$145(4)$
$\mathrm{N} 1-\mathrm{H} 1 c \cdots \mathrm{O}^{\mathrm{I} \mathrm{\prime}}$	$2.38(9)$	$3.133(7)$	$159(4)$

Table 4. Torsion angles within the six-membered chelate ring (${ }^{\circ}$)
$\mathrm{Pt}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(1^{\prime}\right)$

Experimental	Model*
6	14
44	48
-44	48
-6	-14
+1	59
-41	-59

$\mathrm{C}(2)-\mathrm{C}\left(1^{1}\right)-\mathrm{O}\left(1^{1}\right)-\mathrm{Pt}(1)$
$\mathrm{C}\left(1^{\mathrm{i}}\right)-\mathrm{O}\left(\mathrm{l}^{\mathrm{i}}\right)-\mathrm{Pt}(1)-\mathrm{O}(1)$
$-41 \quad-59$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Pl}(1)-\mathrm{O}(1)-\mathrm{C}(1)$
59
Symmetry code: (i) $x, \frac{1}{2}-y, z$.

* Values from model structure with bond lengths $\mathrm{Pt}-\mathrm{O} 2.00, \mathrm{C}-\mathrm{O} 1.30$ and $\mathrm{C}-\mathrm{C} 1.52 \AA$, and bond angles $\mathrm{O}-\mathrm{Pt}-\mathrm{O} 90.0 . \mathrm{P}-\mathrm{O}-\mathrm{C} 109.5$. $\mathrm{O}-\mathrm{C}-\mathrm{C} 109.5$ and $\mathrm{C}-\mathrm{C}-\mathrm{C} 114.5^{\circ}$.

The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares techniques. All H atoms could be located from the difference Fourier maps and were refined with an overall isotropic displacement parameter.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXS86. Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters. Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PAll35). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Bréhin, P., Kozelka, J. \& Bois, C. (1992). Acta Cryst. C48, 2094 2096.

Dong, Y.-H., Feng, J.-C., Huang, Z.-Y., Tang, W.-X., Dai, A.-B., Zhou, Z.-Y. \& Yu, K.-B. (1990). Sci. China Ser. B. 33, 1297-1303.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harrison, R. \& McAuliffe, C. (1980). Inorg. Chim. Acta, 46, L15-L16.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (I970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Rochon, F. D., Melanson, R., Macquet, J. P., Bellanger-Gariepy, F. \& Beauchamp, L. (1985). Inorg. Chim. Acta, 108, 1-6.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acla Cryst. A39, 158-166.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.
Weiner, P. \& Kollman, P. (1981). J. Compuı. Chem. 2, 287-303.

Acta Cryst. (1996). C52, 1188-1190

Tetrahydrogen 1,2-Bis(1,4,7-triaza-1-cyclononyl)ethane Tetrachlorocadmate

Leverett J. Zompa and Reem Haidar
Department of Chemistry, University of Massachusetts at Boston, 100 Morrissey Boulevard, Boston, MA 02125-3393, USA. E-mail: zompa@umbsky.cc.edu

(Received I September 1995; accepted 10 November 1995)

Abstract

The title salt, $\mathrm{C}_{14} \mathrm{H}_{36} \mathrm{~N}_{6}^{4+} .2 \mathrm{CdCl}_{4}^{2-} \quad$ [1,2-bis(1-aza-4,7-diazonia-1-cyclononyl)ethane tetrachlorocadmate], has been structurally characterized. Hydrogen bonds are formed from protons of the secondary amine N atoms to the CdCl_{4}^{2-} anions and the tertiary amine N atoms. This suggests that the secondary amines of the tetraprotonated cation are protonated in the crystal as they appear to be in aqueous solution.

Comment

Hexaprotonated salts of α, ω-bis(1,4,7-triaza-1-cyclononyl)alkanes are strong diprotic acids in aqueous solution. Trends in acidity within the series indicate that protons attached to the tertiary amines are most acidic (Zhang, Hsieh, Margulis \& Zompa, 1995). In the course of metal complexation studies with 1,2-bis(1,4,7-triaza-1cyclononyl)ethane, the title compound, (I), was isolated (see Experimenatal).

The crystal is composed of discrete ions linked by hydrogen bonds between the secondary-amine groups and the tetrachlorocadmate ion. The closest nonbonded distances of the secondary-amine N atoms include: $\mathrm{N} 2 \cdots \mathrm{Cl} 2(-x, 1-y, 2-z) 3.202(6), \mathrm{N} 2 \cdots \mathrm{Cl1}(x-1$, $y+1, z) 3.253$ (6), and N3 $\cdots \mathrm{Cl} 2(x, y+1, z) 3.293$ (6) \AA. The shortest nonbonded contact to the tertiary amine N atom is $\mathrm{N} 1 \cdots \mathrm{Cl} 2(-x, 1-y, 2-z) 3.448(6) \AA$. This indicates that the protons of the tetracation are likely to be associated with the secondary amines. The CdCl bond distances range from 2.429 (1) to 2.504 (1) \AA. The $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ bond angles range from 99.48 (5) to $114.77(5)^{\circ}$, indicating considerable distortion probably

